Computing the Expectation of the Azéma-Yor Stopping Times

نویسنده

  • J. L. Pedersen
چکیده

Given the maximum process (St) = (max 0≤r≤t Xr) associated with a diffusion ((Xt),Px), and a continuous function g satisfying g(s) < s, we show how to compute the expectation of the Azéma-Yor stopping time τg = inf{ t > 0 : Xt ≤ g(St) } as a function of x. The method of proof is based upon verifying that the expectation solves a differential equation with two boundary conditions. The third ‘missing’ condition is formulated in the form of a minimality principle which states that the expectation is the minimal non-negative solution to this system. It enables us to express this solution in a closed form. The result is applied in the case when (Xt) is a Bessel process and g is a linear function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A unifying class of Skorokhod embeddings: connecting the Azéma–Yor and Vallois embeddings

The Skorokhod embedding problem was first proposed, and then solved, by Skorokhod (1965), and may be described as follows. Given a Brownian motion (Bt) t>0 and a centred target law can we find a ‘small’ stopping time T such that BT has distribution ? Skorokhod gave an explicit construction of the stopping time T in terms of independent random variables, and in doing so showed that any zero-mean...

متن کامل

The Azéma-Yor Embedding in Brownian Motion with Drift

x e 2 t dF (t) (x2 IR) and we set h (s) = 1 for s C . This settles the question raised in [6]. In addition, it is proved that is pointwise the smallest possible stopping time satisfying (B + ) which generates stochastically the largest possible maximum of the process (Bt+ t)t 0 up to the time of stopping. This minimax property characterizes uniquely. The result recovers the Azéma-Yor solution o...

متن کامل

The Azéma-Yor Embedding in Non-Singular Diffusions

Let (Xt)t≥0 be a non-singular (not necessarily recurrent) diffusion on R starting at zero, and let ν be a probability measure on R . Necessary and sufficient conditions are established for ν to admit the existence of a stopping time τ∗ of (Xt) solving the Skorokhod embedding problem, i.e. Xτ∗ has the law ν . Furthermore, an explicit construction of τ∗ is carried out which reduces to the Azéma-Y...

متن کامل

Ultimateness and the Azéma-Yor stopping time

© Springer-Verlag, Berlin Heidelberg New York, 1986, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impressio...

متن کامل

A definition and some characteristic properties of pseudo-stopping times

Recently, Williams [Bull. London Math. Soc. 34 (2002) 610–612] gave an explicit example of a random time � associated with Brownian motion such that � is not a stopping time but E(M�)=E(M0) for every bounded martingale M. The aim of this paper is to characterize such random times, which we call pseudo-stopping times, and to construct further examples, using techniques of progressive enlargement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007